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SWELL1 is a glucose sensor regulating β-cell
excitability and systemic glycaemia
Chen Kang1, Litao Xie1, Susheel K. Gunasekar1, Anil Mishra1, Yanhui Zhang1, Saachi Pai1, Yiwen Gao1,

Ashutosh Kumar1, Andrew W. Norris2,3, Samuel B. Stephens1,3 & Rajan Sah1,3,4

Insulin secretion is initiated by activation of voltage-gated Ca2+ channels (VGCC) to trigger

Ca2+-mediated insulin vesicle fusion with the β-cell plasma membrane. The firing of VGCC

requires β-cell membrane depolarization, which is regulated by a balance of depolarizing and

hyperpolarizing ionic currents. Here, we show that SWELL1 mediates a swell-activated,

depolarizing chloride current (ICl,SWELL) in both murine and human β-cells. Hypotonic and

glucose-stimulated β-cell swelling activates SWELL1-mediated ICl,SWELL and this contributes

to membrane depolarization and activation of VGCC-dependent intracellular calcium sig-

naling. SWELL1 depletion in MIN6 cells and islets significantly impairs glucose-stimulated

insulin secretion. Tamoxifen-inducible β-cell-targeted Swell1 KO mice have normal fasting

serum glucose and insulin levels but impaired glucose-stimulated insulin secretion and glu-

cose tolerance; and this is further exacerbated in mild obesity. Our results reveal that β-cell
SWELL1 modulates insulin secretion and systemic glycaemia by linking glucose-mediated

β-cell swelling to membrane depolarization and activation of VGCC-triggered calcium

signaling.
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Type 2 diabetes is characterized by both a loss of insulin
sensitivity and, ultimately, a relative loss of insulin secre-
tion from the pancreatic β-cell1–3. Accordingly, therapeutic

strategies for the treatment of diabetes aim to improve insulin
sensitivity (thiazolidinediones) or augment insulin secretion from
the pancreatic β-cell (sulphonylurea receptor inhibitors). Insulin
secretion from the pancreatic β-cell is triggered by Ca2+ influx
through voltage-gated Ca2+ channels (VGCC) to promote insulin
vesicle fusion with the β-cell plasma membrane. The firing of
VGCC depends on the β-cell membrane potential, which is in
turn mediated by the balance of depolarizing (excitatory) and
hyperpolarizing (inhibitory) ionic currents4—thus, the β-cell
membrane potential is a critical regulator of insulin secretion.
Hyperpolarizing, inhibitory potassium currents have been
extensively studied, including IKATP5, delayed rectifier K+ cur-
rents4,6, and more recently TASK-17 and TALK-18 potassium
channels. Indeed, a cornerstone of current diabetes pharma-
cotherapy, the sulphonylurea receptor inhibitors (i.e.,
glibenclamide/glyburide), is aimed at antagonizing the hyperpo-
larizing IK,ATP current to facilitate β-cell depolarization and
thereby potentiate insulin secretion. While much attention has
focused on these inhibitory hyperpolarizing currents, there is little
knowledge about the excitatory currents required to depolarize
the β-cell in the first place, including the molecular identity of
these currents4, with the exception of emerging data demon-
strating that transient receptor potential (TRP) channels may
contribute to β-cell excitability9–12 in mice.

There is a longstanding hypothesis, first proposed in the 1990s,
that an elusive chloride (Cl−) conductance known as the volume
regulatory anion current (VRAC) or swell-activated Cl− current
(ICl,SWELL) is responsible for an important glucose sensitive, swell-
activated depolarizing current that is required for β-cell depo-
larization and subsequent activation of VGCC-mediated Ca2+

signaling, insulin vesicle fusion and insulin secretion13–20. These
studies and others propose that β-cell depolarization requires not
only the release of a “brake,” mediated by IKATP, but also acti-
vation of an undiscovered swell-activated “accelerator” to drive
the β-cell membrane potential to the threshold potential for
VGCC activation required for insulin secretion.

In the current study, we combine β-cell patch clamp with
shRNA- and CRISPR/cas9-mediated gene silencing, to show for
the first time that the gene Lrrc8a, a member of the leucine-rich
repeat (LRR) containing proteins21,22 (Swell1) is required for this
prominent swell-activated chloride current in MIN6 β-cells, and
in mouse and human primary β-cells. SWELL1 forms a hetero-
multimeric channel with LRRC8b-e21–23 and is responsible for
VRAC and ICl,SWELL in cell lines. SWELL1 and associated
LRRC8b-e are broadly expressed21,24, and although principally
thought of as volume regulatory ion channels, the physiological
function of SWELL1–LRRC8 channels remain unknown. We
show that SWELL1 is required for normal swell and glucose-
stimulated β-cell membrane depolarization, Ca2+ signaling,
insulin secretion, and systemic glucose homeostasis in response to
a glucose load. These data highlight SWELL1-mediated “swell-
secretion” coupling as required for glucose-stimulated insulin
secretion (GSIS) and for regulation of systemic glycaemia.

Results
SWELL1 mediates swell-activated ICl,SWELL in β-cells. Recent
studies have identified SWELL1 as a required component of a
swell-activated Cl− current ICl,SWELL or VRAC in common cell
lines21,22, forming multimeric channels with LRRC8b-e23. To
determine if SWELL1 is also required for ICl,SWELL in pancreatic
β-cells, we adenovirally transduced mouse insulinoma (MIN6)
cells with either an shRNA-directed against Swell1 (Ad-U6-

shswell1-mCherry; Fig. 1a) or a scrambled shRNA control (Ad-
U6-shSCR-mCherry). We observe robust knockdown of SWELL1
protein (Fig. 1b and Supplementary Fig. 6a) and a significant
reduction in hypotonic swell-activated ICl,SWELL in Ad-shSwell1
relative to Ad-shSCR-transduced MIN6 cells (Fig. 1c, d). To
determine whether SWELL1 is also required for ICl,SWELL in
mouse primary β-cells, we isolated islets from Swell1 floxed mice
(Swell1fl/fl)25 and transduced them with an adenovirus-expressing
GFP under control of a rat insulin promoter (Ad-RIP2-GFP) to
allow positive identification of β-cells (GFP+cells). Swell1fl/fl islets
were further treated with either an adenovirus-expressing Cre-
mCherry to induce Cre-mediated excision of the floxed Swell1
allele or a control virus expressing mCherry alone (Supplemen-
tary Fig. 1a). By selecting GFP+/mCherry+ cells, we patch
clamped either control WT β-cells (Swell1fl/fl β-cells) or Swell1
KO β-cells (Swell1fl/fl/Cre β-cells; Fig. 1e). We find that WT β-
cells express substantial swell-activated current that is entirely
abolished upon Cre-mediated recombination in Swell1 KO β-cells
(Fig. 1f–h). We next tested whether SWELL1 is also required for
ICl,SWELL in human β-cells and applied a similar approach. We
transduced human islets with Ad-RIP2-GFP and Ad-shSwell1-
mCherry or Ad-sh-SCR-mCherry (Supplementary Fig. 1b), in
order to isolate and patch clamp human β-cells (GFP+) subjected
to shRNA-mediated SWELL1 KD or to a scrambled control (GFP
+/mCherry+; Fig. 1i). Similar to mouse β-cell recordings, we find
that human β-cells also express significant SWELL1-mediated
swell-activated current (Fig. 1j–l). Indeed, in all β-cells patch
clamped, the reversal potential is ~−12 mV, which is near the
reversal potential for Cl− under our recording conditions, con-
sistent with SWELL1 mediating a swell-activated Cl− conductance
in β-cells, as reported previously13,16,17. These data demonstrate
that SWELL1 is required for VRAC or ICl,SWELL in pancreatic
β-cells.

Extracellular glucose activates SWELL1-mediated ICl,SWELL in
β-cells. Having established that SWELL1 is required for this
previously enigmatic depolarizing swell-activated Cl− current16,17

in MIN6 cells, and in both mouse and human primary β-cells, we
asked whether glucose-mediated β-cell swelling19 is sufficient to
activate SWELL1-mediated ICl,SWELL. First, we measured β-cell
size by light microscopy in WT and Swell1 KO/KD primary
murine and human β-cells, respectively, in response to glucose-
stimulated swelling (at 35–37 °C). WT murine β-cells swell 6.8±
1.6% in cross-sectional area upon perfusion of 16.7 mM glucose
(from 1mM basal glucose) and reach a maximum size at 12 min
post glucose stimulation, followed by a reduction in β-cell size
(Fig. 2a), consistent with regulatory volume decrease (RVD). In
contrast, Swell1 KO murine β-cells swell monotonically to 8.2±
2.4% and exhibit no RVD (Fig. 2a). WT human β-cells show a
similar trend, swelling 8.6± 3.5%, followed by RVD, whereas
Swell1 KD human β-cells swell monotonically to 6.0± 1.5%
(Supplementary Fig. 2a), and similar to Swell1 KO murine β-cells
(Fig. 2a), fail to exhibit RVD. These data indicate that increases in
glucose induce β-cell swelling and that SWELL1 is required for
RVD in primary β-cells, as observed in cell lines21,22,26. Next, we
applied the perforated patch clamp technique to primary β-cells
at 35–37 °C in order to measure currents under the same con-
ditions that induce glucose-mediated β-cell swelling. We find that
increases in glucose (16.7 mM) activate an outwardly rectifying
current in both mouse (Fig. 2b, d) and human (Supplementary
Fig. 2b, c) β-cells. This outwardly rectifying glucose-activated β-
cell current is blocked by the selective VRAC or ICl,SWELL inhi-
bitor, DCPIB (Fig. 2d and Supplementary Fig. 2b,c), and is absent
in Swell1 KO murine β-cells (Fig. 2c, e, f). Importantly, the
activation time-course of the glucose-stimulated SWELL1-
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mediated current either tracks or lags the latency of β-cell swel-
ling in response to stimulatory glucose, consistent with a
mechanism of glucose-mediated β-cell swell activation. Thus,
SWELL1 mediates a glucose sensitive swell-activated Cl− current
in β-cells.

SWELL1 depletion reduces β-cell membrane depolarization. To
determine whether the inward Cl− current carried by
SWELL1–LRRC8 channels is sufficient to depolarize the β-cell, we
next measured β-cell membrane potential (MP) in murine and
human WT and SWELL1-deficient β-cells upon hypotonic β-cell
swelling (210 mOsm/kg) in current-clamp mode using whole-cell
configuration (0 mM ATPi; Fig. 3a–f). Under these conditions,
KATP channels will remain open while SWELL1-mediated ICl,
SWELL is selectively activated by hypotonic swelling. We find that
β-cell resting MP is similar between WT and Swell1 KO/KD β-
cells (Fig. 3b, e) under basal conditions; however, the β-cell
membrane depolarization rate (Fig. 3c, f) is significantly reduced
1.9-fold in Swell1 KO murine β-cells and 2.5-fold in SWELL1-
deficient human β-cells upon hypotonic swelling. These data
confirm that hypotonic swell-activated SWELL1-mediated ICl,
SWELL contributes to β-cell membrane depolarization.

To determine the contributions of SWELL1-mediated ICl,SWELL

to glucose stimulation in β-cells, we next measured β-cell MP in

response to 16.7 mM glucose in WT and Swell1 KO murine β-
cells at 37 °C in perforated patch configuration (Fig. 3g), similar
to recording conditions used to measure glucose-stimulated
SWELL1 currents shown in Fig. 2. WT and Swell1 KO β-cells
have comparable resting MP (Fig. 3h) while glucose-stimulated β-
cell membrane depolarization rate is significantly reduced 2.6-
fold in Swell1 KO β-cells (Fig. 3i). Collectively, these data show
that SWELL1-mediated ICl,SWELL contributes a significant
glucose-stimulated depolarizing current in β-cells.

β-cell SWELL1 is required for glucose and swelling-induced
Ca2+ signaling. Having established that SWELL1-mediated ICl,
SWELL contributes significantly to both glucose and hypotonic
swell-activated β-cell membrane depolarization, we next sought
to examine intracellular Ca2+ signaling in WT and SWELL1-
deficient MIN6 β-cells, primary mouse and primary human β-
cells in response to these stimuli. Using CRISPR/Cas9 technology,
we generated multiple Swell1 KO MIN6 cell lines (Supplementary
Fig. 3), confirming Swell1 gene disruption by PCR (Supplemen-
tary Fig. 3), SWELL1 protein deletion (Fig. 4a and Supplementary
Fig. 6b) and ablation of SWELL1-mediated current (Fig. 4b) in
these cells. We find that glucose-stimulated Ca2+ transients are
entirely abolished in Swell1 KO MIN6 compared to WT cells
(Fig. 4c–d, f), despite preserved KCl (40 mM) stimulated Ca2+
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Fig. 1 SWELL1 mediates ICl,SWELL in MIN6 cells and primary mouse and human pancreatic β-cells. a mCherry fluorescence of the mouse insulinoma cell line
(MIN6) transduced with an adenovirus expressing a short hairpin RNA directed to Swell1 (shSwell1-mCherry). b SWELL1 western blot in MIN6 cells
transduced with shSwell1 compared to scrambled short hairpin RNA (shSCR). β-actin was used as loading control (Supplementary Fig. 6a for full blots). c
Current–voltage relationship of ICl,SWELL in MIN6 cells at baseline (red) and after hypotonic swelling (Hypo, 210mOsm/kg, black) after adenoviral
transduction with shSCR (left) and shSwell1 (right). dMean current inward and outward densities at +100 and −100mV (nshSCR= 3 cells; nshswell1= 4 cells).
e Bright field, GFP, mCherry, and merged images of freshly dispersed primary β-cells from Swell1fl/fl mouse islets co-transduced with Ad-RIP2-GFP and Ad-
CMV-Cre-mCherry. Scale bar represents 20 µm. f, g Current–time relationship (f) and current–voltage relationship (g) of swell-activated ICl,SWELL in wild-
type (WT: Ad-CMV-mCherry/Swell1fl/fl) and Swell1 knockout (KO: Ad-CMV-Cre-mCherry/Swell1fl/fl) mouse primary β-cells. h Mean current inward and
outward densities at +100 and −100mV (n= 5 cells, each group). i Bright field, GFP, mCherry, and merged images of freshly dispersed primary β-cells from
human islets co-transduced with Ad-RIP2-GFP and Ad-shSwell1-mCherry. Scale bar represents 10 µm. j Current–time relationship and k current–voltage
relationship of swell-activated ICl,SWELL in WT and SWELL1 knockdown primary human β-cells. l Mean current inward and outward densities at +100 and
−100mV (nshSCR= 5 cells; nshswell1= 10 cells). Ramp protocol is from +100mV to −100mV (ramp duration: 500ms, holding potential: 0 mV). Data are
shown as mean± s.e.m. *p< 0.05; **p< 0.01; ***p< 0.001, unpaired t-test for d, h, l
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transients (control for intact β-cell excitability). Co-application of
a selective VGCC blocker nifedipine (10 µM) fully inhibits these
glucose-stimulated Ca2+ transients in WT MIN6 cells, consistent
with a mechanism of membrane depolarization and VGCC
activation (Fig. 4e, f).

As β-cells are also known to depolarize, fire Ca2+ transients,
and secrete insulin via a glucose-independent hypotonic swelling
mechanism16,20, we next examined swell-induced Ca2+ signaling
in β-cells in response to hypotonic stimulation (220 mOsm/kg) in
the absence of glucose stimulation (0 mM glucose). These
conditions are anticipated to selectively activate SWELL1-
mediated ICl,SWELL (Fig. 4b) while leaving KATP channels open,
thereby dissociating the contributions of SWELL1-mediated ICl,
SWELL activation from KATP closure. We find that hypotonic
swelling alone can trigger robust Ca2+ transients in WT MIN6
cells (Fig. 4g, j) and these elevations in cytosolic Ca2+ recover
rapidly upon restoration of isotonic solution (Fig. 4g). In contrast,
Swell1 KO MIN6 cells do not exhibit hypotonic swelling-induced
Ca2+ transients (Fig. 4h, j), despite preserved KCl-stimulated Ca2
+ responses, consistent with SWELL1 mediating a swell-activated
depolarizing current in β-cells (Figs. 3a–f and 4b). As with
glucose-stimulated Ca2+ signaling, we also find that hypotonic
swelling triggered Ca2+ transients are fully inhibited by VGCC
blockade (Fig. 4i, j), implicating β-cell membrane depolarization
followed by VGCC activation, as opposed to alternative hypo-
osmotically activated Ca2+ influx pathways, such as TRP
channels27.

To measure SWELL1-dependent Ca2+ signaling in primary
mouse and human β-cells, we generated adenoviruses expressing
the genetically encoded Ca2+-sensor GCaMP6s under control of
the rat insulin promoter 1 (RIP1), either alone (Ad-RIP1-
GCaMP6s), or in combination with Cre-recombinase (Ad-RIP1-
Cre-P2A-GCaMP6s). This approach provides a robust β-cell-
restricted fluorescent Ca2+ sensor while simultaneously allowing
for β-cell-targeted Cre-mediated Swell1 deletion in cultured islets
isolated from Swell1fl/fl mice (Fig. 5a). GCaMP6s Ca2+ imaging
reveals robust glucose-stimulated Ca2+ transients in freshly

dissociated WT primary murine β-cells (Ad-RIP1-GCaMP6s/
Swell1fl/fl; Fig. 5b, d) and these are significantly suppressed in
Swell1 KO β-cells (Ad-RIP1-Cre-P2A-GCaMP6s/Swell1fl/fl;
Fig. 5c, d), despite preserved KCl-stimulated Ca2+ responses.
We used a similar approach in human islets, whereby we co-
transduced islets with Ad-RIP1-GCaMP6s (Fig. 5e) and either
Ad-U6-shSwell1-mCherry or Ad-U6-shSCR-mCherry. Upon islet
dissociation, we imaged only double-labeled GCaMP6s
+/mCherry+primary human β-cells. As with mouse primary β-
cells, we observe robust glucose-stimulated Ca2+ transients in Ad-
shSCR-treated human primary β-cells (Fig. 5f, h) and this is
markedly abograted upon Ad-shSwell1-mediated SWELL1
knockdown (Fig. 5g, h). Collectively, these data demonstrate that
SWELL1 mediates a glucose and hypotonic swell-sensitive
depolarizing ICl,SWELL current that is necessary for normal β-
cell depolarization and consequent intracellular Ca2+ signaling.

The balance of ICl,SWELL and IKATP regulates β-cell Ca2+ sig-
naling. Physiological increases in extracellular glucose and sub-
sequent glucose metabolism induces both β-cell swelling15

(Fig. 2a and Supplementary Fig. 2a) and increases β-cell cyto-
plasmic ATP/ADP ratio2. Therefore, glucose metabolism is pre-
dicted to concurrently activate depolarizing SWELL1-mediated
ICl,SWELL and deactivate hyperpolarizing IKATP—suggesting that
SWELL1 and KATP coordinately regulate β-cell membrane
depolarization. Indeed, application of 3-O-methyl-glucose, a non-
metabolizable form of glucose, is ineffective at stimulating β-cell
Ca2+ transients (Fig. 6a)19, however, it is also incapable of
inducing β-cell swelling19 and KATP closure, as both require
glucose metabolism19. To parse the relative contributions of
depolarizing SWELL1-mediated ICl,SWELL and hyperpolarizing
IKATP to β-cell excitability, we measured intracellular Ca2+ in WT
and Swell1 KO β-cells in response to selective modulators of
either KATP or [Cl−]i, the latter indirectly regulating ICl,SWELL. In
pancreatic β-cells, [Cl−]i is maintained relatively elevated (34–36
mM)28,29 by Na+/K+/Cl− (NKCC1) cotransporters30,31. This
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generates a depolarizing Cl− current upon activation of a Cl−

conductance (i.e., Cl− efflux via ICl,SWELL), since ECl− = ~−15
mV29,32, while resting β-cell membrane potential is ~−70 mV.
NKCC1 inhibition by bumetanide33,34 reduces [Cl−]i, which
drops ECl− closer to −70 mV, thereby diminishing or abolishing
the glucose-stimulated depolarizing current carried by ICl,SWELL.
Indeed, we find that bumetanide (10 µM) fully inhibits glucose-
stimulated (16.7 mM) Ca2+ signaling in both WT MIN6 cells
(Fig. 6b, c) and WT primary murine β-cells (Fig. 6d, e), to an
extent comparable to Swell1 KO β-cells (Fig. 5c, d). These data
suggest that elevated [Cl−]i maintained by β-cell NKCC1 activity
is necessary for β-cell depolarization via a SWELL1-mediated
glucose-stimulated depolarizing Cl− current.

To examine the contribution of IKATP to β-cell depolarization
in WT and Swell1 KO β-cells, we measured basal and glucose-
stimulated intracellular Ca2+ in response to the KATP opener,
diazoxide, and KATP inhibitor, glibenclamide. KATP activation
(100 µM diazoxide) fully suppresses glucose-stimulated intracel-
lular Ca2+ in murine β-cells (Fig. 6f, g), without blocking ICl,SWELL

(Supplementary Fig. 4a, b), indicating that KATP closure is
necessary for glucose-stimulated β-cell excitation. Moreover,
application of low-dose glibenclamide (0.25 nM), which is
predicted to block ~25–30% of KATP channels35 (without
activating ICl,SWELL, Supplementary Fig. 4c, d) is sufficient to
stimulate WT but not Swell1 KO β-cells (Fig. 6h–j). These data

suggests that, under basal conditions, there is a background of
constitutively active SWELL1-mediated depolarizing ICl,SWELL

that is balanced by hyperpolarizing IKATP to maintain resting β-
cell membrane potential. Indeed, basal ICl,SWELL has been
reported in neurons36,37 and, importantly, has been measured
in β-cells (NP = ~0.06, at 1 mM glucose)38. Near full IKATP
inhibition with higher dose glibenclamide (10 nM, 0 mM
glucose)35 is capable of activating intracellular Ca2+ in both
WT and Swell1 KO β-cells (Fig. 6k–m), just as robust ICl,SWELL

activation with hypotonic swelling (at 0 mM glucose) can
overcome IKATP and trigger Ca2+ transients (Fig. 4g) and insulin
release from β-cells16. Taken together, these data support a model
whereby SWELL1-mediated ICl,SWELL and IKATP counterbalance
each other to regulate glucose-stimulated β-cell Ca2+ signaling.

SWELL1 depletion selectively impairs glucose-mediated insulin
secretion. To determine the impact of SWELL1-dependent glu-
cose-stimulated Ca2+ signaling on insulin secretion in β-cells, we
measured glucose-stimulated insulin secretion (GSIS) in WT and
Swell1 KO MIN6 cells. We find that the glucose-dependent (1,
5.5, and 30 mM) increase in insulin secretion in WT MIN6 cells is
significantly diminished in Swell1 KO MIN6 cells (Fig. 7a), par-
ticularly at higher glucose concentration (30 mM), despite no
change in total insulin content (Fig. 7b). We next isolated islets
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(RMP) and c membrane depolarization rate in WT (n= 10) and Swell1 KO (n= 8) murine primary β-cells in response to hypotonic swelling. d β-cell
membrane potential measured in current-clamp mode upon application of hypotonic solution (210mOsm/kg) in WT (left) and SWELL1 KD (right) human
primary β-cells. e RMP and f membrane depolarization rate in WT (n= 5) and SWELL1 KD (n= 10) human primary β-cells in response to hypotonic
swelling. g Glucose (16.7 mM)-elicited membrane depolarization in isolated WT (left) and Swell1 KO murine β-cells. h RMP and i membrane depolarization
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from Swell1fl/fl mice followed by transduction with either Ad-
RIP1-RFP (WT) or Ad-RIP1-Cre-P2A-RFP (Swell1 KO; Fig. 7c).
Similar to MIN6 cells, we note a significant reduction in GSIS
(16.7 mM glucose) in Swell1 KO compared to WT islets (Fig. 7d),
despite relatively preserved L-arginine-stimulated insulin secre-
tion (Fig. 7d), and similar total insulin content (Fig. 7e). Com-
parable to murine islets, SWELL1 KD human islets also exhibit a
selective impairment in GSIS (Fig. 7f, g).

Swell1 deletion impairs insulin release and systemic glycaemia
in vivo. We next generated tamoxifen(Tm)-inducible β-cell-
targeted Swell1 KO mice by crossing Swell1fl/fl mice with
Ins1CreERT2 mice (Ins1CreERT2;Swell1fl/fl, Fig. 8a)39,40 to examine
the requirement of β-cell SWELL1 for insulin secretion and
regulation of systemic glycaemia in vivo. Ins1CreERT2 mice have
been previously characterized and validated to be indistinguish-
able from WT mice with respect to body weight and glucose
homeostasis, while providing efficient, Tm-inducible, β-cell
selective recombination40. Indeed, islets isolated from
Ins1CreERT2;Rosa26-tdTomato;Swell1fl/fl mice reveal efficient β-
cell-targeted recombination after Tm-administration (40–80 mg/
kg/day gavage × 5 days; Supplementary Fig. 5), similar to prior
studies40. Moreover, we observe no evidence of β-cell loss upon
Swell1 deletion based on the number of tdTomato-positive β-cells
present in the islet. We observe pancreas-restricted Swell1
recombination in Tm-induced Ins1CreERT2;Swell1fl/fl mice (+) by

PCR across Swell1 Exon 3 (426 bp amplicon; Fig. 8b); and this
recombination is not observed in vehicle-treated Ins1CreERT2;
Swell1fl/fl mice (−). Finally, we observe complete ablation of
SWELL1-mediated ICl,SWELL in 80% of β-cells isolated from Tm-
induced Ins1CreERT2;Swell1fl/fl (8/10 cells; Fig. 8c–d), while 100%
of β-cells from vehicle-induced Swell1fl/fl (WT) exhibit robust
hypotonically activated SWELL1-mediated currents (4/4 cells).

We next measured glucose tolerance in Swell1fl/fl and
Ins1CreERT2;Swell1fl/fl before and after Tm-induced β-cell selective
Swell1 deletion. Pre-Tm-induction, Swell1fl/fl (−) and Ins1CreERT2;
Swell1fl/fl (−) mice have identical fasting glucose levels (6 h fast)
and glucose tolerance in response to a glucose load (Fig. 8e).
However, post-Tm-treatment, Ins1CreERT2;Swell1fl/fl (+) mice
exhibit significantly impaired glucose tolerance compared to
Tm-induced Swell1fl/fl (+) mice, predominantly soon after the
glucose load (Fig. 8f). In a separate cohort of mice, we measured
serum insulin in Swell1fl/fl and Ins1CreERT2;Swell1fl/fl mice after
Tm-induction (+). We find that basal (fasting) serum insulin
values are similar between genotypes (Fig. 8g), however, with
glucose stimulation insulin secretion is significantly impaired in
Tm-induced Ins1CreERT2;Swell1fl/fl (+) mice compared to Tm-
induced Swell1fl/fl mice (+) (Fig. 8g, h), and this is also associated
with impaired glucose tolerance (Fig. 8i). When these mice are
placed on a high-fat diet (HFD; 60% fat) for 5–6 weeks to induce
mild obesity, and a state of pre-diabetes, we find that Tm-induced
Ins1CreERT2;Swell1fl/fl (+) mice exhibit elevated fasting serum
glucose (Fig. 8j) and exacerbated glucose intolerance (Fig. 8k) as
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compared to Tm-induced Swell1fl/fl (+) mice, despite similar body
weights (Fig. 8l). Collectively, these data reveal that SWELL1 is
post developmentally required for intact glucose-stimulated β-cell
membrane depolarization, Ca2+-dependent insulin secretion and
regulation of systemic glycaemia, particularly in the setting of
mild obesity.

Discussion
Ion channel regulation of β-cell excitability is critical for med-
iating β-cell Ca2+ signaling, insulin secretion, and systemic gly-
caemia2,41. Therefore, identifying novel ion channels that control
β-cell excitability will advance our understanding of β-cell phy-
siology, and potentially open previously unexplored therapeutic
avenues for the treatment of type 2 diabetes (T2D). VRAC or ICl,
SWELL is a swell-activated ionic current that has been studied for
decades through electrophysiological recordings in numerous cell
types42–44, but only recently has it been discovered that SWELL1/
LRRC8a, and associated LRRC8 isoforms b–e, form the ICl,SWELL

channel complex in common cell lines21–23. Accordingly, the
physiological role of SWELL1-mediated ICl,SWELL in primary cells
remains largely unexplored. In the current study, we asked
whether SWELL1 is required for VRAC/ICl,SWELL described pre-
viously in the pancreatic β-cell16,17,19 and whether the SWELL1
channel complex mediates a glucose- and swell-sensitive depo-
larizing current in β-cells, as initially proposed by Best et al.14 Our
data are consistent with a model in which SWELL1 is a required
component of a swell-activated depolarizing Cl− channel that is
present in MIN6 cells, in primary murine β-cells and, impor-
tantly, in primary human β-cells. SWELL1-mediated ICl,SWELL

activates in response to glucose-stimulated β-cell swelling and is
required for normal membrane depolarization, VGCC activation,
Ca2+-mediated insulin vesicle fusion, and insulin secretion

(Fig. 9). In this model, the hyperpolarizing K+

conductances5–8,45,46 act as “brakes” on β-cell excitability and
insulin secretion, while SWELL1-mediated ICl,SWELL is the
“accelerator”—promoting β-cell excitability in response to
glucose-mediated β-cell swelling. We propose that it is the bal-
ance between ICl,SWELL and IKATP that is critical in regulating β-
cell membrane potential, as either robust ICl,SWELL activation, or
full IKATP inhibition, are alone capable of depolarizing the β-cell.
However, partial IKATP inhibition (~30% K(ATP) blockade; 0.25
nM glibenclamide)35 is incapable of stimulating β-cells in the
absence of SWELL1-mediated ICl,SWELL. Our data are consistent
with previous reports that postulate the existence of glucose
sensitive anionic current(s), in addition to IKATP that contribute
to glucose-stimulated β-cell depolarization13,14,20,47–49; especially
since glucose-dependent IKATP inhibition occurs primarily at
substimulatory glucose concentrations (0–5 mM) and is saturated
in the stimulatory range between 5–20 mM glucose48. Thus, in
our current model, SWELL1-mediated ICl,SWELL and IKATP are
both glucose sensitive ionic currents that antithetically regulate β-
cell membrane potential.

The activation mechanism of SWELL1-mediated ICl,SWELL is
unique among other known ion channels expressed in the β-cell
in that it is mediated by β-cell swelling13,16,20, that under phy-
siological conditions, is glucose stimulated14,19, and dependent on
glucose metabolism19. The mechanism of glucose-stimulated
β-cell swelling is thought to occur via glucose break down into
lactate14,15 or other small metabolites, which increase intracel-
lular osmotic pressure and draws in water50, potentially via
aquaporin 7 channels51,52. In this way, SWELL1-mediated
ICl,SWELL senses extracellular glucose indirectly, and is intrinsi-
cally coupled to glucose metabolism; just as IKATP is linked to
glucose metabolism via glucose-dependent changes in ATP/ADP
ratio. In addition, SWELL1-mediated ICl,SWELL may also be
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modulated by intracellular ATP, in addition to β-cell swelling53,
providing another putative mechanism for metabolic regulation
of ICl,SWELL.

Notably, SWELL1-deficient β-cells exhibit preserved glucose-
stimulated swelling, suggesting that glucose metabolism is intact
in these cells15,19. Hence, it is unlikely that impaired β-cell
excitability in SWELL1-deficient β-cells arises from defective
glucose metabolism. Indeed, β-cell-targeted disruption of glucose
metabolism through β-cell selective deletion of glucokinase
induces a very severe diabetic phenotype with early neonatal
lethality54, in contrast to milder, glucose intolerance observed
with tamoxifen-induced β-cell-targeted Swell1 deletion.

The biophysical properties of the SWELL1 channel complex
mediating ICl,SWELL is intriguing with respect to β-cell electro-
physiology and regulation of excitation–secretion coupling. The
property of outward rectification provides greater β-cell mem-
brane depolarization at hyperpolarized potentials (i.e., larger
inward currents) to initiate β-cell excitation, but then electro-
chemically “shuts-off” at more depolarized potentials as the
membrane potential approaches the equilibrium potential of Cl−

(ECl− ~−15 mV29,32). As the membrane potential exceeds ECl−,
SWELL1-mediated ICl,SWELL provides a hyperpolarizing current
to stabilize the β-cell around ECl−, thereby maximizing Ca2+

influx via voltage-gated Ca2+ channels, as hypothesized by

Eberhardson et al.28, and also allows for β-cell repolarization, and
termination of insulin secretion upon subsequent activation of
delayed-rectifier potassium channels6. Interestingly, the RVD
mediated by ICl,SWELL/VRAC activation promotes β-cell con-
traction (Fig. 2a and Supplementary Fig. 2a)19, thereby removing
the swell stimulus for ICl,SWELL activation. This results in SWELL1
channel complex closure upon return to basal glucose, which also
permits β-cell repolarization.

In addition to SWELL1-mediated ICl,SWELL, there are certainly
other depolarizing currents that contribute to β-cell excitability,
since full suppression of IKATP is capable of stimulating Swell1 KO
β-cells. These include TRP channels, including TRPM312,
TRPM455, and TRPM59–11; though not all of these TRP channels
are necessarily expressed in human β-cells56. Cystic fibrosis
transmembrane conductance regulator (CFTR) has been impli-
cated as a Cl− conductance important for glucose-stimulated β-
cell excitability and secretion57 as has ANO1/TMEM16A58;
however, the presence of CFTR in the β-cell is controversial59.
Finally, ClC-3, a chloride channel localized to insulin granules,
has been proposed to regulate insulin processing and secretion
via acidification mechanisms60. Given the significant impact of
SWELL1 on β-cell excitability, insulin secretion and systemic
glycaemia, it is possible that SWELL1 may have other, as yet
unrealized, ion channel regulatory functions in β-cell biology.
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not significant
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Our main findings are that SWELL1-mediated ICl,SWELL is a
glucose/swell-activated depolarizing ionic current that is required
for GSIS both in vitro and in vivo. Under non-pathological
conditions, in lean mice, SWELL1-mediated ICl,SWELL is primarily
required for maintaining glycaemia in response to a glucose
challenge—inducing a state of β-cell-dependent pre-diabetes.
However, with super-imposed mild insulin resistance arising
from a short course of high-fat diet (60% fat for 6 weeks),
SWELL1-mediated ICl,SWELL becomes important for maintaining
systemic fasting glycaemia, suggesting that SWELL1 may be
primarily required to sustain β-cell insulin secretion in hyper-
glycemic states, as occur in the setting of T2D. Indeed, T2D islets
exhibit reduced GSIS by up to 60%1,2 and this remains true even
when expressed relative to total insulin content3. Moreover, this
impairment in GSIS from T2D β-cells is largely recoverable by
sulfonylurea, L-ariginine or KCl treatment in vitro61; similar to
our findings in Swell1 KO β-cells/islets. Taken together, these data
raise the intriguing possibility that impaired β-cell function in
T2D may arise from deficient SWELL1-mediated ICl,SWELL in β-
cells. We are currently testing this hypothesis.

In summary, our data suggest that β-cell SWELL1 acts as a
glucose sensor by coupling β-cell swelling to β-cell depolarization
—a form of swell activation or swell secretion coupling—to
potentiate GSIS. In the broader context of our findings on
SWELL1 signaling in the adipocyte25, these data suggest that
SWELL1 coordinately regulates both insulin secretion and insulin
sensitivity25 in response to a nutrient load. These findings high-
light the importance of SWELL1 in the regulation of systemic
glucose metabolism, and organismal energy homeostasis, parti-
cularly in the setting of obesity.

Methods
Animals. The Institutional Animal Care and Use Committee of the University of
Iowa approved all experimental procedures involving animals. All the mice were

housed in a temperature, humidity, and light-controlled room and allowed free
access to water and food. Both male and female (49% males; 51% females) Swell1fl/
fl, Ins1CreERT2;Swell1fl/fl, and Ins1CreERT2;Rosa26-tdTomato;Swell1fl/fl mice, ages
6–20 weeks were used for in vitro and for in vivo experiments. In a subset of
experiments, 8–10-week-old Swell1fl/fl and Ins1CreERT2;Swell1fl/fl mice were swit-
ched to a HFD (HFD rodent diet with 60 kcal% fat, Research Diets, Inc., D12492)
for at least 5 weeks.

Antibodies and ion channel modulators. Rabbit polyclonal anti-SWELL1 anti-
body was generated against the epitope QRTKSRIEQGIVDRSE (Pacific Anti-
bodies). Rabbit monoclonal anti-β-actin antibody was purchased from Cell
Signaling (8457). Primary antibodies were used at 1:1000 dilution. 4-[(2-Butyl-6,7-
dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid
(DCPIB) was purchased from TOCRIS (#2A/157889); nifedipine from Sigma-
Aldrich (N7634); bumetanide from Sigma-Aldrich (B3023); glibenclamide from
Sigma-Aldrich (G0639); diazoxide from Sigma-Aldrich (D9035); and 3-O-Methyl-
glucose from Sigma-Aldrich (M4879). Stock solutions of drugs were made in
DMSO (Sigma-Aldrich, D8418) and diluted to desired concentrations immediately
prior to use.

Adenoviruses and adeno-associated virus preparation. Human adenoviruses
type 5 with hLRRC8A-shRNA (Ad5-mCherry-U6-hLRRC8A-shRNA, 2.2 × 1010

PFU/ml), a scrambled non-targeting control (Ad5-U6-scramble-mCherry, 1 × 1010

PFU/ml), β-cell-targeted GCaMP6s (Ad5-RIP1-GCaMP6s, 4.9 × 1010 PFU/ml), β-
cell-targeted GCaMP6s-2A-iCre (Ad5-RIP1-GCaMP6s-2A-iCre, 5.8 × 1010 PFU/
ml), β-cell-targeted GFP (Ad5-RIP2-GFP, 4.1 × 1010 PFU/ml), β-cell-targeted RFP
(Ad5-RIP1-RFP, 1.9 × 1010 PFU/ml), and β-cell-targeted RFP-2A-iCre (Ad5-RIP1-
RFP-2A-Cre, 6.4 × 1010 PFU/ml) were obtained from Vector Biolabs. Human
adenovirus type 5 with mCherry (Ad5-CMV-mCherry; 1 × 1010 PFU/ml) and Cre-
mCherry (Ad5-CMV-mCherry, 1 × 1010 PFU/ml) were obtained from The Uni-
versity of Iowa Viral Vector Core.

Cell culture. No cell lines used in this study were found in the database of com-
monly misidentified cell lines that is maintained by ICLAC and NCBI biosample.
MIN6 cells were kindly provided by Dr Robert Tsushima (York University,
Canada) and were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
containing 4.5 g/l glucose, 10% FBS, 1% L-glutamine and 100 IU penicillin and 100
μg/ml streptomycin. Cells were grown in culture dishes at 37 °C, 5% CO2 and 95%
air. Cell lines were tested negative for mycoplasma. For electrophysiological
recordings and intracellular calcium imaging, cells were seeded onto collagen-
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coated (Millipore, USA) glass cover slips and used for experiments after 24–48 h at
30–40% confluency.

CRISPR/Cas9-mediated Swell1 knockout in MIN6 cells. A CRISPR/Cas9-based
tool was utilized to knockout Swell1 gene in MIN6 cells, where the target guide
sequences designed using web-based CRISPR design tool (http://crispr.mit.edu/)
were cloned into a bicistronic vector-expressing cas9 (pSpCas9(BB)-2A-Puro)62.
Either 1A/2B (KO1) or 2B/3C (KO2) plasmids in combination were transfected
into MIN6 cells using LipofectAMINE 2000 as per the manufacturer’s instructions
(Supplementary Table 1). After a 48 h period, selection medium containing pur-
omycin (1 µg/ml) was added to the cells and maintained for 5 days. Individual
clones from the enriched pool were further isolated by dilution method62. Swell1
gene deletion was confirmed by PCR amplification spanning the double guide
targeted region (Supplementary Fig. 3), followed by SWELL1 western blot (Fig. 4a
and Supplementary Fig. 6b).

Human islets. Human islets were obtained through the Integrated Islet Distribu-
tion Program (IIDP, shared with Dr John Engelhardt) or Prodo Laboratories
(shared with Dr Yumi Imai). Ethical approval was not required for the in vitro
studies using human islets obtained from IIDP and Prodo Laboratories. Patients
were anonymous to the research team except for information of gender, age, and
BMI. Islets were cultured in RPMI 1640 (2% FBS) and transferred to the laboratory
within 24 h.

Murine islet isolation. Swell1fl/fl mice (8–14 weeks old) were killed by Avertin
(0.0125 g/ml, dissolved in H2O) injection (20 µl/g, i.p.) followed by cervical dis-
location according to the approved procedures. The pancreas was perfused via the
common bile duct with 2–3 ml HBSS containing type V collagenase (0.8 mg/ml),
and then removed and digested at 37 °C for 10 min. Islets were freed by gentle

agitation, washed in RPMI containing 1% FBS and purified on Histopaque 1077
and 1119 gradients. Islets were then transferred to 60 mm Petri dish with culture
medium for short-term culture (<24 h). For GSIS experiments, islets were sorted
for equal size and cultured in 24-well plates. For isolation of primary β-cells,
isolated islets were further incubated in trypsin for 5 min, dispersed into single
cells, and then transferred to matrigel-coated cover slips for patch clamp and
calcium fluorescence imaging.

Adenoviral transduction of murine and human islets. Human and murine islets
were cultured in RPMI media with 2% FBS overnight. The next day, adenovirus
was added into the islet containing media (final concentration of 5 × 107 PFU/ml)
and islets incubated for 24 h. The islets were then washed with PBS three times and
cultured in RPMI medium with 10% FBS for 4–5 days before performing further
experiments. Transduction efficiency was assessed by fluorescence microscopy.

Western blotting studies. Western blotting studies were carried out with lysates
prepared from MIN6 cells by using standard techniques63. The primary antibodies
used are listed above in antibodies and ion channel modulators. Cultured wild-type
(WT) and the Swell1 knockout (KO) MIN6 cells were washed twice with ice-cold
phosphate buffer saline (PBS) and lysed using RIPA buffer (NaCl: 150 mM,
HEPES: 20 mM, NP-40: 1%, EDTA: 5 mM, pH 7.4) containing protease and
phosphatase inhibitors. The lysate was further clarified by sonication for about
10–20 s of two–three cycles. The supernatant was collected from the whole lysate
centrifuged at 14,000 rpm for 15 min at 4 °C. Protein concentration was estimated
by DC protein assay kit as per the manufacturer’s (Bio-Rad) instructions. For
protein detection using western blot method, 20–50 µg of protein was boiled in SDS
loading buffer and separated using 4–15% SDS-PAGE and further transferred onto
a PVDF membrane. The membrane were either blocked with 5% BSA or 5% milk
containing TBST buffer (Tris: 0.2 M, NaCl: 1.37 M, Tween-20: 0.2%, pH 7.4) for 1 h
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at room temperature and probed with appropriate primary antibodies by incu-
bating them at 4 °C overnight. Membrane was further incubated with appropriate
secondary antibody (Bio-Rad, goat-anti-rabbit #170-6515) for 1 h at room tem-
perature. The membranes were visualized by chemiluminescence using the Che-
miDoc XRS+imaging system (Bio-Rad).

Calcium imaging. MIN6 cells were loaded with Fura-2-AM (10 µM) in DMEM at
37 °C for 20 min and then incubated with the basal isotonic Krebs-Ringer Bicar-
bonate HEPES (KRBH) buffer for 30 min. For calcium imaging experiments with
hypotonic swelling, isotonic KRBH buffer consisted of the following (in mM): 90
NaCl, 5 NaHCO3, 4.8 KCl, 1.2 KH2PO4, 2.5 CaCl2, 2.4 MgSO4, 10 HEPES, 90
mannitol, 0.1% w/v bovine serum albumin, pH 7.4 with NaOH (300 mOsm/kg);
hypotonic KRBH buffer was (in mM): 90 NaCl, 5 NaHCO3, 4.8 KCl, 1.2 KH2PO4,
2.5 CaCl2, 2.4 MgSO4, 10 HEPES, 0.1% w/v bovine serum albumin, pH 7.4 with
NaOH (220 mOsm/kg). For glucose-stimulated intracellular calcium signaling, the
basal KRBH solution was (in mM): 129 NaCl, 5 NaHCO3, 4.8 KCl, 1.2 KH2PO4, 2.5
CaCl2, 2.4 MgSO4, 10 HEPES, 1 glucose, 29 mannitol, 0.1% w/v bovine serum
albumin, pH 7.4 with NaOH (300 mOsm/kg). In MIN6 cells, we stimulated from 1
mM glucose basal solution to 30 mM glucose, and with primary β-cells from 1 to
16.7 mM glucose. Osmolarity was matched by adjusting with mannitol. For
glibenclamide-stimulated intracellular calcium signaling, the basal KRBH solution
was (in mM): 129 NaCl, 5 NaHCO3, 4.8 KCl, 1.2 KH2PO4, 2.5 CaCl2, 2.4 MgSO4,
10 HEPES, 30 mannitol, 0.1% w/v bovine serum albumin, pH 7.4 with NaOH (300
mOsm/kg). All imaging was performed at 35–37 °C. MIN6 cells were imaged every
3 s using a 20x/0.75 NA objective (Olympus, Japan) on an Olympus IX73 micro-
scope (Olympus, Japan), alternatively excited by 340 and 387 nm light using a DG-
4 xenon-arc lamp (Sutter Instruments, USA). Emission signals were recorded at
510 nm and images obtained using a CMOS charge-coupled device (CCD) camera
(Orca flash 4.0+, Hamamatsu, Japan). Intracellular calcium is represented as the
change in the ratio of 340/387 fluorescent signal intensity. For primary mouse and
human β-cells, dissociated β-cells from Ad-RIP1-GCaMP6s (Swell1fl/fl mouse/
human) or Ad-RIP1-GCaMP6s-2A-iCre (Swell1fl/fl mouse) transduced islets were
imaged as above but were imaged every 10 s via 485 nm excitation and 520 nm
emission filters and relative changes in calcium concentration expressed as F/Fo.

Cell volume measurements. In experiments to study the effects of glucose-
induced β-cell swelling, dissociated WT and SWELL1-deficient primary mouse and
human β-cells identified from Ad-RIP1-GCaMP6s or Ad-RIP1-GCaMP6s-2A-iCre
(Swell1fl/fl β-cells) transduced islets were imaged in bright field. Acquisitions were
performed on an Olympus IX73 microscope at 37 °C, using a 40x/0.60 NA
objective, connected to a CMOS CCD camera. Images were acquired every 10 s and
captured using MetaMorph (Molecular Devices) software. β-cells were first per-
fused with basal KRBH solution consisting of (in mM): 129 NaCl, 5 NaHCO3, 4.8
KCl, 1.2 KH2PO4, 2.5 CaCl2, 2.4 MgSO4, 10 HEPES, 1 glucose, 29 mannitol, 0.1%
w/v bovine serum albumin, pH 7.4 with NaOH (300 mOsm/kg). Glucose con-
centration was increased from 1 to 16.7 mM. Osmolarity was matched by adjusting
with mannitol. Quantification of β-cell cross-sectional area was performed from
bright-field images using ImageJ (NIH) using an automated tool and expressed as
total cross-sectional area (A) over initial area (Ao).

Electrophysiology. Patch clamp recordings were performed using either an
Axopatch 200B amplifier or a MultiClamp 700B amplifier paired to a Digidata

1550 digitizer—both using pClamp 10.4 software. For hypotonic swelling, extra-
cellular solution contained (in mM): 90 NaCl, 2 CsCl, 1 MgCl2, 1 CaCl2, 10 HEPES,
10 mannitol, pH 7.4 with NaOH (210 mOsm/kg). The isotonic extracellular
solution consisted of the same composition above but with 110 mM instead of 10
mM mannitol (300 mOsm/kg). The intracellular solution contained (in mM): 120
L-aspartic acid, 20 CsCl, 1 MgCl2, 5 EGTA, 10 HEPES, 5 MgATP, 120 CsOH, 0.1
GTP, pH 7.2 with CsOH. Swell-activated currents were elicited by perfusing cells
with hypotonic solution (220 mOsm/kg) at room temperature in whole-cell
configuration

For recording glucose-stimulated ICl,SWELL currents, the basal extracellular
solution contained (in mM): 90 NaCl, 2 CsCl, 1 MgCl2, 1 CaCl2, 10 HEPES, 109
mannitol, 1 glucose, ±0.01 nifedipine, pH 7.4 with NaOH (300 mOsm/kg). For
glucose stimulation, glucose was increased from 1 to 16.7 mM (primary mouse and
human β-cells). Osmolarity was matched with mannitol. The patch electrodes were
prepared from borosilicate glass capillaries (WPI) and had a resistance of 3.0–5.0
MΩ when filled with pipette solution. For perforated patch recordings, the
intracellular solution was as above but without ATP and GTP, and contained 240
μg/ml amphotericin B (Sigma-Aldrich, A9528). The holding potential was 0 mV.
Voltage ramps from +100 to −100 mV (at 0.4 mV/ms) were applied every 4 s.
Sampling interval was 100 μs and filtered at 10 KHz. Cells with a membrane
resistance below GΩ or access resistance above 25MΩ were discarded.

For measuring β-cell membrane potential upon hypotonic swelling stimulation,
we used the whole-cell patch clamp configuration in current-clamp mode. Cells
were treated with either isotonic or hypotonic KRBH buffer. Isotonic KRBH buffer
consisted of the following (in mM): 90 NaCl, 5 NaHCO3, 4.8 KCl, 1.2 KH2PO4, 2.5
CaCl2, 2.4 MgSO4, 10 HEPES, 90 mannitol, 0.1% w/v bovine serum albumin, pH
7.4 with NaOH (300 mOsm/kg). Hypotonic KRBH buffer contained (in mM): 90
NaCl, 5 NaHCO3, 4.8 KCl, 1.2 KH2PO4, 2.5 CaCl2, 2.4 MgSO4, 10 HEPES, 0.1% w/
v bovine serum albumin, pH 7.4 with NaOH (220 mOsm/kg). Pipettes were filled
with (in mM): 100 L-aspartic acid, 40 KCl, 1 MgCl2, 10 EGTA, and 10 HEPES (pH
7.25, adjusted with KOH), 295 mOsm/kg. Experiments were performed at room
temperature.

For measuring glucose-stimulated changes in β-cell membrane potential, we
used the perforated patch configuration in current-clamp mode. Cells were treated
with 1 or 16.7 mM glucose dissolved in Krebs-Ringer-buffer (KRB) of the following
composition (in mM): 129 NaCl, 5 NaHCO3, 4.8 KCl, 1.2 KH2PO4, 2.5 CaCl2, 2.4
MgSO4, 10 HEPES, and 0.1 % w/v BSA (pH 7.4, adjusted with NaOH), osmolarity
was 300 mOsm/kg matched with mannitol. The pipettes were filled with solution
(in mM): 140 KCl, 1 MgCl2, 10 EGTA, and 10 HEPES (pH 7.25, adjusted with
KOH), 295 mOsm/kg. All glucose stimulation experiments were carried out at
35–37 °C.

Insulin secretion and protein content assays. GSIS from MIN6 cells and mouse
islets was determined using a static incubation protocol. For MIN6 cells, cells were
cultured in 6-well plates until ∼50% confluent, and the media was changed every
24–48 h. On the day of experiment, cell culture media was removed, and the cells
were washed twice with PBS and then pre-incubated with glucose-free KRBH
buffer supplemented with 0.1% bovine serum albumin for 1 h at 37 °C and in 5%
CO2. MIN6 cells were then pre-incubated in KRBH buffer (1 mM glucose, 300
mOsm/kg) for 2 h at 37 °C and in 5% CO2. After removal of pre-incubation
solution, MIN6 cells were incubated in KRBH containing 1 mM, 5.5 mM, or 30
mM glucose for 1 h at 37 °C and in 5% CO2. For all experiments, incubation media
was collected, and the amount of secreted insulin was determined using ELISA
(Mercodia, Sweden). After completion of the incubations, the MIN6 cells were
lysed by addition of RIPA buffer, and the protein content was determined using the
DC protein assay (Bio-Rad, USA).

Insulin secretion from isolated islets was determined using a similar protocol.
Briefly, isolated islets of similar size were handpicked and pre-incubated with
KRBH (1 mM glucose, 300 mOsm/kg) for 1 h in cell culture inserts within a 24-well
plate (Falcon, USA) at 37 °C and in 5% CO2. After the pre-incubation period, pre-
incubation solutions were removed, inserts were then moved to fresh wells and
KRBH containing glucose (1, 5.5, or 16.7 mM) or glucose (16.7 mM) plus L-
arginine (Sigma-Aldrich, A8094) was added into the inserts. The islets were then
incubated for 1 h at 37 °C and in 5% CO2. After incubation, the medium was
collected and the amount of secreted insulin determined using ELISA as described
above. At the completion of the experiment, islets were lysed by addition of RIPA
buffer and the amount of insulin detected by ELISA. MIN6 cell and mouse islet
data sets were obtained from four independent experiments.

Generation of CRISPR/Cas9-mediated Swell1 floxed (Swell1fl/fl) mice. Swell1fl/
fl mice were generated as previously described63. Briefly, Swell1 intronic sequences
were obtained from Ensembl Transcript ID ENSMUST00000139454. All CRISPR/
Cas9 sites were identified using ZiFit Targeter Version 4.2 (http://zifit.partners.org/
ZiFiT/). Pairs of oligonucleotides corresponding to the chosen CRISPR-Cas9 target
sites were designed, synthesized, annealed, and cloned into the pX330-U6-Chi-
meric_BB-CBh-hSpCas9 construct (Addgene plasmid # 42230), following the
protocol detailed in Cong et al.64. CRISPR-Cas9 reagents and ssODNs were
injected into the pronuclei of F1 mixed C57/129 mouse strain embryos at an
injection solution concentration of 5 ng/μl and 75–100 ng/μl, respectively. Cor-
rectly targeted mice were screened by PCR across the predicted loxP insertion sites
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Fig. 9 Working model: SWELL1 is a virtual glucose sensor regulating β-cell
excitability and systemic glycaemia. GLUT2, glucose transporter; ΔMP,
membrane depolarization; VGCC, voltage-gated calcium channel
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on either side of Exon 3. These mice were then backcrossed >8 generations into a
C57B6 background.

Generation of tamoxifen-inducible β-cell-targeted Swell1 KO mice. The gen-
eration of homozygous floxed Swell1 mice (Swell1fl/fl mice) in which exon 3 is
flanked by loxP sites is described above. Tamoxifen-inducible β-cell-targeted Swell1
KO were generated by crossing Swell1fl/fl mice with Ins1CreERT2 mice40 (Jackson
Laboratory) to produce Ins1CreERT2;Swell1fl/fl mice. Offsprings were genotyped by
PCR using Ins1CreERT2 and Swell1 floxed allele-specific primers:

Ins1CreERT2-F: 5′-TGGACTATAAAGCTGGTGGGCAT-3′
Ins1CreERT2-R: 5′-TGCGAACCTCATCACTCGT-3′
Swell1fl-F: 5′-CTAATCAGGGAGAGACAGCAGAG-3′
Swell1fl-R: 5′-GATAGTTCTGGCCAGTGAGTGG-3′
To achieve tamoxifen-induced β-cell-targeted Swell1 recombination,

Ins1CreERT2;Swell1fl/fl mice (6–8-week-old males), were treated by oral gavage with
tamoxifen 40–80 mg/kg (Sigma-Aldrich, T6648) dissolved in sunflower seed oil
(Sigma-Aldrich, S5007) five times over a 2-week period. Littermate, gender-
matched Swell1fl/fl mice treated with tamoxifen as above served as controls (WT).
To test for recombination efficiency Ins1CreERT2;Swell1fl/fl mice were then crossed
with Rosa26-tdTomato mice to generate Ins1CreERT2;Rosa26-tdTomato;Swell1fl/fl

mice. Mice were studied at least 4 weeks after the last tamoxifen dose to allow time
for any non-specific effects of tamoxifen to wash-out. All mice used were
maintained on a C57BL/6 background.

Confocal microscopy. To assess recombination efficiency of Ins1CreERT2 mice, we
isolated islets from tamoxifen-induced and untreated Ins1CreERT2;Rosa26-tdTo-
mato;Swell1fl/fl mice and imaged freshly isolated islets with a Zeiss LSM510 con-
focal laser scanning microscope (Zeiss, NY, USA) using a 20x/0.8 NA objective
lens. Islets were excited by 561 nm light and emission signals were recorded at 581
nm in a tile mode (5 × 5) in order to observe the tdTomato fluorescence in larger
fields of view. Then all 25 individual frames were tiled together to form the
complete image. All images were processed and analyzed with ZEN 2009 (Zeiss)
software.

Glucose tolerance test. Mice were deprived of food for 6 h and then injected with
glucose (intraperitoneal, 2 g/kg body weight). Blood was then collected via the tail
at 0, 5, 15, 30, 60, 90, and 120 min after the glucose injection. For HFD mice, 1 g/kg
glucose was injected (i.p.). Glucose levels in the collected blood were determined by
blood glucose meter (Bayer HealthCare LLC).

In vivo insulin secretion assay. For in vivo measurements of GSIS, tamoxifen-
induced Swell1fl/fl and Ins1CreERT2;Swell1fl/fl mice (littermate, gender-matched)
were fasted 6 h prior to the experiments. Blood samples were collected from the tail
vein with microvette (Sarstedt,16.444.100) before the injection of glucose as 0 min
time point. Mice were then injected with 2 g/kg (BW) glucose (i.p.). Blood samples
were collected from the tail vein at 7, 15, and 30 min time points and centrifuged
for plasma collection (2000 × g, 20 min, 4 °C). Plasma insulin concentrations were
determined by using an ELISA kit (Crystal Chem Inc., 90080).

Statistics. Data are represented as mean ± s.e.m. Two-tail paired or unpaired
Student’s t-tests were used for comparison between groups. For three or more
groups, data were analyzed by one-way analysis of variance and Tukey’s post hoc
test. For glucose tolerance test, data were analyzed by two-way analysis of variance
and Tukey’s post hoc test. A probability of p< 0.05 was considered to be statisti-
cally significant.

Data availability. All relevant data, within reason, will be available from the
authors on request.
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